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ABSTRACT

We study the initial evolution of COVID-19 cases and deaths with machine learn-
ing methods. Our interest is to understand if a nonlinear time component is present
at the beginning of the pandemic. We concentrate on a toy model, a Besag-York-
Molliè (BYM) model, and COVID-19 cases and deaths in Ohio (R0 > 1). Our
analysis shows the presence of a polynomial time component in both cases and
deaths, but questions if this can give any public health insight.

1 INTRODUCTION

A major concern with the spread of any virus such as COVID-19 is how fast it initially spreads. In
those stages, the number of infected individuals grows exponentially (Brauer et al., 2019; Diekmann
et al., 2013; Hilton & Keeling, 2020; Chowell et al., 2016) if the basic reproduction number R0 is
> 1. In the case R0 ' 1, the growth rate might not be exactly exponential anymore. Consider for
example, the basic SIR model: dS

dt = −βSIN , dIdt = βSI
N − γ, I dRdt = γI . Early in the evolution

of the disease, the second equation gives a first order approximation: ln I(t)
I(0) ' [βS(0) − γI(0)]t.

Note that in particular when R0 ' 1, this expansion is inconclusive, and so higher order terms
become fundamental. This perspective is common in singularity theory for ODEs, and Hartman-
Grobman Theorem implies that nonlinear terms are essentially different from linear around critical
points (Arnold, 1993). Recall that R0 depends on the contact rate and so space and the socio-
economic determinants influence it as well (Foster & Selvitella, Submitted; Selvitella & Foster,
2020; Selvitella et al., Submitted). Understanding the spread of COVID-19 early in the pandemic
is important for multiple public health reasons, such as avoiding strain on the healthcare system
(Miller et al., 2020; Selvitella & Foster, 2020; Foster & Selvitella, Submitted). Understanding the
spatial and temporal characteristics of the transmission of COVID-19 during the first stages of the
pandemic can also potentially help predict the dynamics of early stages of subsequent waves or
novel mutations.

In this work, we are interested in understanding if higher order terms play a role in the spatio-
temporal diffusion of COVID-19. The models we are interested in look like a Taylor-type expansion,
which roughly speaking looks like:

lnY (t, x) = c0(x) + c1(x)f1(t− tx) + c2(x)f2(t− tx) + . . . .

Here Y is a count variable, the c’s are functions of the spatial components and can be random,
and the f ’s are deterministic, possibly nonlinear, and capture increasing model complexity. This
expansion mimics the separation of variables broadly used in solving linear PDEs (Strauss, 2008;
John, 1982). The tx’s are space dependent time translations, which can, for example, account for
time-lag between different locations. We will concentrate on a Bayesian Hierarchical model, the
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Besag-York-Molliè (BYM) model (Besag et al., 1991; Blangiardo & Cameletti, 2015; Bernardinelli
et al., 1995), and study the number of cases and deaths in Ohio, as an example of with R0 > 1, for
the first three weeks following the first COVID-19 case in each county.

Our analysis suggests that when the linear model catches significant components of the count vari-
ables, the optimal nonlinearity exponent p is very high and/or unstable, indicating that the basic
structure is linear. This has implications for decision makers as nonlinear terms are a source of
irregularity with respect to initial data, and so possibly causing uncertainty even in the short-term
evolution of a pandemic, which in turn challenges public health policies.

The remaining part of this manuscript is organized as follows. Section 2 is dedicated to the methods,
Section 3 to our results and a discussion, while in Section 4, we draw our conclusions.

2 METHODS

Our dataset (Center for Disease Control and Prevention) contains the number of cases and deaths
associated with COVID-19 for each of the 88 Ohio counties in the first three weeks, after their
first case, which might not be synchronous. The analysis utilized the R-INLA statistical package
(R-INLA Software package).

Suppose yit represents the count of cases/deaths at time t with t = 1, . . . , T with T = 21. The
index i = 1, . . . , n identifies the county in Ohio with n = 88. We will consider yit ∼ Poiss(λit),
or Negative Binomial (McCullagh & Nedler, 1989). The parameter λit is assumed to be λit =
Eiρit. While ρit represents the rate of appearance of new cases/deaths at time t in area/county
i, the expected number of cases/deaths in area i is defined as follows. Suppose the population
under consideration is partitioned into J classes and rj is the standardized reference rate for class
j = 1, . . . , J and Pij is the population count of class j in county i. Then the expected number of
cases/deaths in area i is given by Ei =

∑J
j=1 Pijrj . We then use the link function ηit = log(ρit) to

relate the number of cases/deaths to their spatio-temporal covariates as

log(ρit) = ηit = b0 + ui + vi + Φit.

The intercept b0 represents the average outcome rate in the entire state of Ohio; the covariate
vi is the area-specific effect modeled as exchangeable, while ui is modeled as an autoregress-
ive stochastic process (Besag, 1974; Blangiardo & Cameletti, 2015). Suppose that N(i) is the
set of neighborhoods of area i and that u−i represents the area-specific effects excluding county
i. Then, the conditional distribution ui | u−i is given by ui | u−i ∼ N

(
ψi, θ

2
i

)
, with

ψi = µi +
∑n
k=1 rik (uk − µk) and θ2i = s2i where µi and s2i = σ2

u/Ni are the mean and vari-
ance of area i respectively, and Ni = |N(i)| is the number of neighborhoods of area i. Here,
σ2
u represents the amount of variation between the spatially-structured random effects, and rik

is the indicator of spatial proximity between areas i and k and is defined as rik = φWik with
Wik = aik/Ni and aik = 1 if i and k are neighbours and 0 otherwise. The factor φ > 0 makes
the distribution proper and ensures the positivity of the variance-covariance matrix (I − φW )S2,
with I the n × n identity matrix, W = {Wik}ni,k=1, and S2 = diag{s21, . . . , s2n} (Cressie, 1993).
With these assumptions, the proper Conditional AutoRegressive (CAR) u is multivariate Normal
u ∼ MVN

(
µ, (I − φW )S2

)
, with µ = {µ1, . . . , µn} the mean vector. We will further assume

φ = 1 and
∑n
i=1 ui = 0, a specification called intrinsic Conditional AutoRegressive which together

with the exchangeable random effect gives rise to the so called Besag-York-Molliè model (BYM)
(Besag et al., 1991; Blangiardo & Cameletti, 2015). If further µi = 0 for every i = 1, . . . , n, then
ui | u−i ∼ N

(
1
Ni

∑n
k=1 aikuk, s

2
i

)
. See (Besag et al., 1991; Best et al., 2005; Lawson, 2009;

Lee, 2011) for more details. The temporal component Φit will be a parametric trend of the form
Φit = (β + δi)t

p for t = 1, . . . , T and i = 1, . . . , n, but with p = 1, or p > 1 or a sum of both.
Here, β represents the main trend, while δi,

∑n
i=1 δi = 0, represents the county i differential trend.

We assume homogeneity in the population, namely Ei = 1 for every i = 1, . . . , n.

The Deviance Information Criterion (DIC) is a measure of model fitting typically used for Bayesian
models (Spiegelhalter. et al., 2002) which includes a trade-off between goodness of fit and model
complexity. Given a random variable Y , whose distribution depends on a set of parameters θ, the
DIC is given by the following formula: DIC = D̄ + pD, where pD represents the Effective Num-
ber of Parameters, which is computed as pD = D̄ − D(θ̄) with D̄ := Eθ|y [D(θ)] and D(θ̄) :=
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Outcome Linear Polynomial Linear + Polynomial
P NB P NB P NB

Cases 11670 [1] (1) 8792 [1] (1) 8652 [2] (20) 8663 [0.5] (20) 7964 [3] (20) 8557 [10] (20)
Deaths 1746 [1] (1) 1742 [1] (1) 1744 [0.5] (20) 1742 [1] (20) 1717 [10] (20) 1722 [8] (20)

Table 1: This table reports the (i) DIC value of the optimal model in each group, (ii) p of the optimal
model [p], (iii) the number n of models considered (n).

D
(
Eθ|y [θ]

)
. Here, D(θ) := −2 log(p(y|θ)) represents the Deviance and D̄ the posterior expect-

ation of the deviance. The DIC can be equivalently rewritten as DIC = D(θ̄) + 2pD, form that
resembles the Akaike Information Criterion (AIC) (James et al., 2013) that the DIC generalizes.

We consider a total of 164 models: (i) yit as the count of cases/deaths (2×), (ii) yit distributed as
Poisson or Negative Binomial (2×); and (iii) p = 0 (1×) and p = [0.5 : 0.5 : 10] (20×) and the
combination of the two (20×)). It is worth noticing that, in our models, we translate the time index
of a county-dependent factor tx = ti, i = 1, . . . , n.

Figure 1: Posterior Mean of the Spatial
Main Effect ζi = exp(ui + vi) of the
number of deaths and p = 1

Figure 2: Differential Effect δi of the number
of deaths and p = 1.

3 RESULTS AND DISCUSSION

We will report some of the most representative results of our analysis. The first pertains to the linear
model of Poisson deaths. Figure 1 and Figure 2 visually represent the distribution of (respectively)
spatial and temporal effects on the number of COVID-19 deaths per county in Ohio in the linear case
p = 1. The spatial effect is given by the posterior mean of the spatial main effect ζi = exp(ui + vi)
for i = 1, . . . , n. The temporal effect is given by the differential effect δi for i = 1, . . . , n and
represents the extra growth rate of county i with respect to the Ohio growth rate. Darker are those
counties where the spatial effect ζi and/or the temporal effect δi are stronger. The model highlights
the presence of spatial correlation between counties. The performances of the linear models are
competitive with respect to the other models (Table 1) and are enough to support the presence of a
spatio-temporal differential effect, which is the strongest in Northeast Ohio.

Understanding the exact growth rate of the number of cases and deaths has crucial implications for
public health and can guide government policy decisions. Note that our analysis includes a single
family of models and so it cannot be used alone to guide a government decision on such an important
issue. However, interesting points of discussion emerge. The models for deaths are generally better
than those for cases. This is speculatively related to the higher uncertainty of determining cases
vs deaths early in the pandemic. Based on the DIC, the optimal models are those with Poisson
distributed counts for both cases and deaths, linear plus polynomial term (p = 3 for cases and
p = 10 for deaths), which gives some support for the inclusion of a polynomial growth rate early in
the pandemic. However, this result has to be taken with caution. The fact that the optimal p grows
when the linear term is included might indicate that the extra component is actually not modeling
the signal. Recall that nonlinear terms vary much quicker than linear and so their presence causes
instability. This instability could be of concern for public health decision makers, as policies might
be more sensitive to small variations in such situations. Moreover, highly nonlinear components are
hard to distinguish from noise. The fit improvement achieved by the inclusion of a polynomial term
might still be related to a problem with the model rather than a true effect. Indeed, the DIC is more
stable for the Negative Binomial (Figure 3), which in the case of deaths seem to exclude a nonlinear
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Figure 3: Instability of the optimal p based DIC for our BYM models. Top Left: Poisson Deaths +
L and P model; Top Right: NegBin Cases + L and P model; Bottom Left: Poisson Cases + P model;
Bottom Right: NegBin Deaths + P model.

effect (Table 1). The models for the number of cases seem more supportive to the inclusion of a
nonlinear temporal component, but also this is not fully convincing as the first three weeks of a
pandemic might be those with the least reliable data. A highly nonlinear term might detect not a
signal, but instead the systematic inaccuracy in the number of the first reported cases.

Another point to make is that the curve (p,DIC(p)) varies qualitatively quite a bit. In Figure 3
we show some representative graphs. When the outcome is modeled as Poisson, the search for the
optimal p is relatively stable, while when the outcome is Negative Binomial, it is very unstable.
Possibly counterintuitively, we interpret this as the Negative Binomial with linear growth fitting our
data better, since what remains from a good fit is more noisy and can be mistaken for a very high
nonlinearity. The lack of smoothness in p of DIC(p) indicates that including the nonlinear term is
possibly not a good idea as the choice of p does not seem univocal.

4 CONCLUSIONS

We have discussed the possible inclusion of nonlinear terms in the evolution of COVID-19 early
in the pandemic using as a toy model: a Bayesian Hierarchical BYM model and Ohio’s case and
death counts. The linear model seems preferable (eg.the results for Poisson deaths with a substantial
spatial effect). Although in the cases where R0 ∼ 1 higher order terms can play an important role
in understanding the dynamics of COVID-19, we did not find strong evidence that for our setting,
which has R0 > 1, nonlinear terms play an important role in the initial phases of a pandemic. Our
analysis is ongoing and we are verifying our results with more complex models and more general
situations (eg. all US counties). Since higher order terms in the expansion of the trajectory of
COVID-19 cases/deaths can rule the spreading of the disease, especially in critical cases (R0 ' 1),
their understanding can provide valuable information to policymakers and ultimately lead to positive
public health consequences.

DATA AND CODE AVAILABILITY

Data is publicly available and code is available upon request.
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